There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2x}{3} + \frac{xcos(x)}{3} - sin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{3}xcos(x) + \frac{2}{3}x - sin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{3}xcos(x) + \frac{2}{3}x - sin(x)\right)}{dx}\\=&\frac{1}{3}cos(x) + \frac{1}{3}x*-sin(x) + \frac{2}{3} - cos(x)\\=& - \frac{2cos(x)}{3} - \frac{xsin(x)}{3} + \frac{2}{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !