There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ e^{-{e}^{(\frac{x}{2})}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{-{e}^{(\frac{1}{2}x)}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{-{e}^{(\frac{1}{2}x)}}\right)}{dx}\\=&e^{-{e}^{(\frac{1}{2}x)}}*-({e}^{(\frac{1}{2}x)}((\frac{1}{2})ln(e) + \frac{(\frac{1}{2}x)(0)}{(e)}))\\=&\frac{-{e}^{(\frac{1}{2}x)}e^{-{e}^{(\frac{1}{2}x)}}}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !