There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2{a}^{x}ln(a)}{x} - 2e\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2{a}^{x}ln(a)}{x} - 2e\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2{a}^{x}ln(a)}{x} - 2e\right)}{dx}\\=&\frac{2*-{a}^{x}ln(a)}{x^{2}} + \frac{2({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))ln(a)}{x} + \frac{2{a}^{x}*0}{x(a)} - 2*0\\=&\frac{-2{a}^{x}ln(a)}{x^{2}} + \frac{2{a}^{x}ln^{2}(a)}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !