There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2.4(6.665 - \frac{9340}{(x + 1401)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{22416}{(x + 1401)} + 15.996\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{22416}{(x + 1401)} + 15.996\right)}{dx}\\=& - 22416(\frac{-(1 + 0)}{(x + 1401)^{2}}) + 0\\=& - \frac{-22416}{(x + 1401)(x + 1401)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !