There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{C}{({e}^{x})} + 4x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = C{e}^{(-x)} + 4x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( C{e}^{(-x)} + 4x\right)}{dx}\\=&C({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})) + 4\\=&-C{e}^{(-x)} + 4\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !