Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ({x}^{2} + x)(\frac{1}{x} - ln(x) - 1){\frac{1}{e}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x^{2}{\frac{1}{e}}^{x}ln(x) - x{\frac{1}{e}}^{x}ln(x) + {\frac{1}{e}}^{x} - x^{2}{\frac{1}{e}}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x^{2}{\frac{1}{e}}^{x}ln(x) - x{\frac{1}{e}}^{x}ln(x) + {\frac{1}{e}}^{x} - x^{2}{\frac{1}{e}}^{x}\right)}{dx}\\=& - 2x{\frac{1}{e}}^{x}ln(x) - x^{2}({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))ln(x) - \frac{x^{2}{\frac{1}{e}}^{x}}{(x)} - {\frac{1}{e}}^{x}ln(x) - x({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))ln(x) - \frac{x{\frac{1}{e}}^{x}}{(x)} + ({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})})) - 2x{\frac{1}{e}}^{x} - x^{2}({\frac{1}{e}}^{x}((1)ln(\frac{1}{e}) + \frac{(x)(\frac{-0}{e^{2}})}{(\frac{1}{e})}))\\=& - x{\frac{1}{e}}^{x}ln(x) + x^{2}{\frac{1}{e}}^{x}ln(x) - 3x{\frac{1}{e}}^{x} - {\frac{1}{e}}^{x}ln(x) - 2{\frac{1}{e}}^{x} + x^{2}{\frac{1}{e}}^{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return