There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} + x)(\frac{1}{x} - ln(x) - 1)}{({e}^{x})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - x^{2}{e}^{(-x)}ln(x) - x{e}^{(-x)}ln(x) + {e}^{(-x)} - x^{2}{e}^{(-x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - x^{2}{e}^{(-x)}ln(x) - x{e}^{(-x)}ln(x) + {e}^{(-x)} - x^{2}{e}^{(-x)}\right)}{dx}\\=& - 2x{e}^{(-x)}ln(x) - x^{2}({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))ln(x) - \frac{x^{2}{e}^{(-x)}}{(x)} - {e}^{(-x)}ln(x) - x({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))ln(x) - \frac{x{e}^{(-x)}}{(x)} + ({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)})) - 2x{e}^{(-x)} - x^{2}({e}^{(-x)}((-1)ln(e) + \frac{(-x)(0)}{(e)}))\\=& - x{e}^{(-x)}ln(x) + x^{2}{e}^{(-x)}ln(x) - 3x{e}^{(-x)} - {e}^{(-x)}ln(x) - 2{e}^{(-x)} + x^{2}{e}^{(-x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !