There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 3 + {\frac{1}{(x + 2)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{(x + 2)^{2}} + 3\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{(x + 2)^{2}} + 3\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x + 2)^{3}}) + 0\\=& - \frac{2}{(x + 2)^{3}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{2}{(x + 2)^{3}}\right)}{dx}\\=& - 2(\frac{-3(1 + 0)}{(x + 2)^{4}})\\=&\frac{6}{(x + 2)^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !