Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ (-67{x}^{2} - 41x + 40){e}^{(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -67x^{2}{e}^{(2x)} - 41x{e}^{(2x)} + 40{e}^{(2x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -67x^{2}{e}^{(2x)} - 41x{e}^{(2x)} + 40{e}^{(2x)}\right)}{dx}\\=&-67*2x{e}^{(2x)} - 67x^{2}({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) - 41{e}^{(2x)} - 41x({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 40({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))\\=&-216x{e}^{(2x)} + 39{e}^{(2x)} - 134x^{2}{e}^{(2x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -216x{e}^{(2x)} + 39{e}^{(2x)} - 134x^{2}{e}^{(2x)}\right)}{dx}\\=&-216{e}^{(2x)} - 216x({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) + 39({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) - 134*2x{e}^{(2x)} - 134x^{2}({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))\\=&-138{e}^{(2x)} - 700x{e}^{(2x)} - 268x^{2}{e}^{(2x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( -138{e}^{(2x)} - 700x{e}^{(2x)} - 268x^{2}{e}^{(2x)}\right)}{dx}\\=&-138({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) - 700{e}^{(2x)} - 700x({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)})) - 268*2x{e}^{(2x)} - 268x^{2}({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))\\=&-976{e}^{(2x)} - 1936x{e}^{(2x)} - 536x^{2}{e}^{(2x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return