There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(24x + {e}^{(-5x)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(24x + {e}^{(-5x)})\right)}{dx}\\=&\frac{(24 + ({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})))}{(24x + {e}^{(-5x)})}\\=&\frac{-5{e}^{(-5x)}}{(24x + {e}^{(-5x)})} + \frac{24}{(24x + {e}^{(-5x)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !