Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {({x}^{16} + 3)}^{(\frac{5}{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x^{16} + 3)^{\frac{5}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x^{16} + 3)^{\frac{5}{2}}\right)}{dx}\\=&(\frac{5}{2}(x^{16} + 3)^{\frac{3}{2}}(16x^{15} + 0))\\=&40(x^{16} + 3)^{\frac{3}{2}}x^{15}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 40(x^{16} + 3)^{\frac{3}{2}}x^{15}\right)}{dx}\\=&40(\frac{3}{2}(x^{16} + 3)^{\frac{1}{2}}(16x^{15} + 0))x^{15} + 40(x^{16} + 3)^{\frac{3}{2}}*15x^{14}\\=&960(x^{16} + 3)^{\frac{1}{2}}x^{30} + 600(x^{16} + 3)^{\frac{3}{2}}x^{14}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return