Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{e^{y}}{(1 - xe^{y})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{y}}{(-xe^{y} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{y}}{(-xe^{y} + 1)}\right)}{dx}\\=&(\frac{-(-e^{y} - xe^{y}*0 + 0)}{(-xe^{y} + 1)^{2}})e^{y} + \frac{e^{y}*0}{(-xe^{y} + 1)}\\=&\frac{e^{{y}*{2}}}{(-xe^{y} + 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{e^{{y}*{2}}}{(-xe^{y} + 1)^{2}}\right)}{dx}\\=&(\frac{-2(-e^{y} - xe^{y}*0 + 0)}{(-xe^{y} + 1)^{3}})e^{{y}*{2}} + \frac{2e^{y}e^{y}*0}{(-xe^{y} + 1)^{2}}\\=&\frac{2e^{{y}*{3}}}{(-xe^{y} + 1)^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return