Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{ie^{\frac{2.303(x - p)}{b}}}{((1 + \frac{ie^{\frac{2.303(x - p)}{b}}}{l})F)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ie^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ie^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})}\right)}{dx}\\=&(\frac{-(0 + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}(\frac{2.303}{b} + 0)}{l})}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})^{2}})ie^{\frac{2.303x}{b} - \frac{2.303p}{b}} + \frac{ie^{\frac{2.303x}{b} - \frac{2.303p}{b}}(\frac{2.303}{b} + 0)}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})}\\=&\frac{-2.303i^{2}Fe^{\frac{2.303x}{b} - \frac{2.303p}{b}}e^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})bl} + \frac{2.303ie^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{(F + \frac{iFe^{\frac{2.303x}{b} - \frac{2.303p}{b}}}{l})b}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return