Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{4{(cos(x))}^{6}}{3} - \frac{5{(cos(x))}^{4}}{2} + {(cos(x))}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4}{3}cos^{6}(x) - \frac{5}{2}cos^{4}(x) + cos^{2}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4}{3}cos^{6}(x) - \frac{5}{2}cos^{4}(x) + cos^{2}(x)\right)}{dx}\\=&\frac{4}{3}*-6cos^{5}(x)sin(x) - \frac{5}{2}*-4cos^{3}(x)sin(x) + -2cos(x)sin(x)\\=&-8sin(x)cos^{5}(x) + 10sin(x)cos^{3}(x) - 2sin(x)cos(x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return