There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{3}{(2x)} - 2 + {\frac{1}{2}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{\frac{3}{2}}{x} + {\frac{1}{2}}^{x} - 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{\frac{3}{2}}{x} + {\frac{1}{2}}^{x} - 2\right)}{dx}\\=&\frac{\frac{3}{2}*-1}{x^{2}} + ({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})})) + 0\\=&\frac{-3}{2x^{2}} + {\frac{1}{2}}^{x}ln(\frac{1}{2})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !