Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{1}{10}sin(2Pix) + tanh(10x))sin(2Piy)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{10}sin(2Pix)sin(2Piy) + sin(2Piy)tanh(10x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{10}sin(2Pix)sin(2Piy) + sin(2Piy)tanh(10x)\right)}{dx}\\=&\frac{1}{10}cos(2Pix)*2Pisin(2Piy) + \frac{1}{10}sin(2Pix)cos(2Piy)*0 + cos(2Piy)*0tanh(10x) + sin(2Piy)sech^{2}(10x)*10\\=&\frac{Pisin(2Piy)cos(2Pix)}{5} + 10sin(2Piy)sech^{2}(10x)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return