Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(sqrt(1 - {x}^{2}))}{(12 - 4x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sqrt(-x^{2} + 1)}{(-4x + 12)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sqrt(-x^{2} + 1)}{(-4x + 12)}\right)}{dx}\\=&(\frac{-(-4 + 0)}{(-4x + 12)^{2}})sqrt(-x^{2} + 1) + \frac{(-2x + 0)*\frac{1}{2}}{(-4x + 12)(-x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{4sqrt(-x^{2} + 1)}{(-4x + 12)^{2}} - \frac{x}{(-4x + 12)(-x^{2} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return