There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2*3.14(x + 2){({x}^{2} - 4x + 5)}^{0.5}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 6.28(x - 4x + 5)^{\frac{1}{2}}x + 12.56(x - 4x + 5)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 6.28(x - 4x + 5)^{\frac{1}{2}}x + 12.56(x - 4x + 5)^{\frac{1}{2}}\right)}{dx}\\=&6.28(\frac{0.5(1 - 4 + 0)}{(x - 4x + 5)^{\frac{1}{2}}})x + 6.28(x - 4x + 5)^{\frac{1}{2}} + 12.56(\frac{0.5(1 - 4 + 0)}{(x - 4x + 5)^{\frac{1}{2}}})\\=&\frac{-9.42x}{(x - 4x + 5)^{\frac{1}{2}}} - \frac{18.84}{(x - 4x + 5)^{\frac{1}{2}}} + 6.28(x - 4x + 5)^{\frac{1}{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !