There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 3.587{e}^{(-5{x}^{2})} - 0.05542x + 53.22\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 3.587{e}^{(-5x)} - 0.05542x + 53.22\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3.587{e}^{(-5x)} - 0.05542x + 53.22\right)}{dx}\\=&3.587({e}^{(-5x)}((-5)ln(e) + \frac{(-5x)(0)}{(e)})) - 0.05542 + 0\\=&-17.935{e}^{(-5x)} - 0.05542\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !