There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{2n}{k} + \frac{2(nx)ln(\frac{n}{k})}{kln(x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2nxln(\frac{n}{k})}{kln(x - 1)} + \frac{2n}{k}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2nxln(\frac{n}{k})}{kln(x - 1)} + \frac{2n}{k}\right)}{dx}\\=&\frac{2nln(\frac{n}{k})}{kln(x - 1)} + \frac{2nx*0}{k(\frac{n}{k})ln(x - 1)} + \frac{2nxln(\frac{n}{k})*-(1 + 0)}{kln^{2}(x - 1)(x - 1)} + 0\\=&\frac{2nln(\frac{n}{k})}{kln(x - 1)} - \frac{2nxln(\frac{n}{k})}{(x - 1)kln^{2}(x - 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !