There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (1 - \frac{a}{x})sqrt(1 - {x}^{2}) - 1 + x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sqrt(-x^{2} + 1) - \frac{asqrt(-x^{2} + 1)}{x} + x - 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sqrt(-x^{2} + 1) - \frac{asqrt(-x^{2} + 1)}{x} + x - 1\right)}{dx}\\=&\frac{(-2x + 0)*\frac{1}{2}}{(-x^{2} + 1)^{\frac{1}{2}}} - \frac{a*-sqrt(-x^{2} + 1)}{x^{2}} - \frac{a(-2x + 0)*\frac{1}{2}}{x(-x^{2} + 1)^{\frac{1}{2}}} + 1 + 0\\=&\frac{-x}{(-x^{2} + 1)^{\frac{1}{2}}} + \frac{asqrt(-x^{2} + 1)}{x^{2}} + \frac{a}{(-x^{2} + 1)^{\frac{1}{2}}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !