Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 15 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 15th\ derivative\ of\ function\ ln(1 + i{x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(ix^{2} + 1)\\\\ &\color{blue}{The\ 15th\ derivative\ of\ function:} \\=&\frac{2856658246041600i^{15}x^{15}}{(ix^{2} + 1)^{15}} - \frac{10712468422656000i^{14}x^{13}}{(ix^{2} + 1)^{14}} + \frac{16068702633984000i^{13}x^{11}}{(ix^{2} + 1)^{13}} - \frac{12274703400960000i^{12}x^{9}}{(ix^{2} + 1)^{12}} + \frac{5021469573120000i^{11}x^{7}}{(ix^{2} + 1)^{11}} - \frac{1054508610355200i^{10}x^{5}}{(ix^{2} + 1)^{10}} + \frac{97639686144000i^{9}x^{3}}{(ix^{2} + 1)^{9}} - \frac{2615348736000i^{8}x}{(ix^{2} + 1)^{8}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return