There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(17470000 - x)(33634 + x)}{(x - 30000)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x^{2}}{(x - 30000)} + \frac{17436366x}{(x - 30000)} + \frac{587585980000}{(x - 30000)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x^{2}}{(x - 30000)} + \frac{17436366x}{(x - 30000)} + \frac{587585980000}{(x - 30000)}\right)}{dx}\\=& - (\frac{-(1 + 0)}{(x - 30000)^{2}})x^{2} - \frac{2x}{(x - 30000)} + 17436366(\frac{-(1 + 0)}{(x - 30000)^{2}})x + \frac{17436366}{(x - 30000)} + 587585980000(\frac{-(1 + 0)}{(x - 30000)^{2}})\\=&\frac{x^{2}}{(x - 30000)^{2}} - \frac{2x}{(x - 30000)} - \frac{17436366x}{(x - 30000)^{2}} - \frac{587585980000}{(x - 30000)^{2}} + \frac{17436366}{(x - 30000)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !