There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {e}^{sin(2x + \frac{pi}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{sin(2x + \frac{1}{3}pi)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{sin(2x + \frac{1}{3}pi)}\right)}{dx}\\=&({e}^{sin(2x + \frac{1}{3}pi)}((cos(2x + \frac{1}{3}pi)(2 + 0))ln(e) + \frac{(sin(2x + \frac{1}{3}pi))(0)}{(e)}))\\=&2{e}^{sin(2x + \frac{1}{3}pi)}cos(2x + \frac{1}{3}pi)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !