There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{x}{2})e^{1 - \frac{x}{10}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{2}xe^{\frac{-1}{10}x + 1}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}xe^{\frac{-1}{10}x + 1}\right)}{dx}\\=&\frac{1}{2}e^{\frac{-1}{10}x + 1} + \frac{1}{2}xe^{\frac{-1}{10}x + 1}(\frac{-1}{10} + 0)\\=&\frac{e^{\frac{-1}{10}x + 1}}{2} - \frac{xe^{\frac{-1}{10}x + 1}}{20}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !