Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ rcos(w)x + l{(1 - {(\frac{rsin(w)x}{l})}^{2})}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = rxcos(w) + (\frac{-r^{2}x^{2}sin^{2}(w)}{l^{2}} + 1)^{\frac{1}{2}}l\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( rxcos(w) + (\frac{-r^{2}x^{2}sin^{2}(w)}{l^{2}} + 1)^{\frac{1}{2}}l\right)}{dx}\\=&rcos(w) + rx*-sin(w)*0 + (\frac{\frac{1}{2}(\frac{-r^{2}*2xsin^{2}(w)}{l^{2}} - \frac{r^{2}x^{2}*2sin(w)cos(w)*0}{l^{2}} + 0)}{(\frac{-r^{2}x^{2}sin^{2}(w)}{l^{2}} + 1)^{\frac{1}{2}}})l + 0\\=&rcos(w) - \frac{r^{2}xsin^{2}(w)}{(\frac{-r^{2}x^{2}sin^{2}(w)}{l^{2}} + 1)^{\frac{1}{2}}l}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return