There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -{x}^{3}{e}^{(1 - x)} + x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -x^{3}{e}^{(-x + 1)} + x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -x^{3}{e}^{(-x + 1)} + x\right)}{dx}\\=&-3x^{2}{e}^{(-x + 1)} - x^{3}({e}^{(-x + 1)}((-1 + 0)ln(e) + \frac{(-x + 1)(0)}{(e)})) + 1\\=&-3x^{2}{e}^{(-x + 1)} + x^{3}{e}^{(-x + 1)} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !