There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ (100 + \frac{x}{100})(100 + y - z)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x + \frac{1}{100}yx - \frac{1}{100}zx + 100y - 100z + 10000\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x + \frac{1}{100}yx - \frac{1}{100}zx + 100y - 100z + 10000\right)}{dx}\\=&1 + \frac{1}{100}y - \frac{1}{100}z + 0 + 0 + 0\\=&\frac{y}{100} - \frac{z}{100} + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{y}{100} - \frac{z}{100} + 1\right)}{dx}\\=&0 + 0 + 0\\=&0\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 0\right)}{dx}\\=&0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !