There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 1.19sin((\frac{3.14}{4}) - x + arctan(\frac{1}{0.65}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 1.19sin(-x + arctan(1.53846153846154) + 0.785)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 1.19sin(-x + arctan(1.53846153846154) + 0.785)\right)}{dx}\\=&1.19cos(-x + arctan(1.53846153846154) + 0.785)(-1 + (\frac{(0)}{(1 + (1.53846153846154)^{2})}) + 0)\\=&-1.19cos(-x + arctan(1.53846153846154) + 0.785)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !