There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sin(\frac{(1 + {x}^{4})}{({x}^{2} + cos({x}^{3}))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = sin(\frac{x^{4}}{(x^{2} + cos(x^{3}))} + \frac{1}{(x^{2} + cos(x^{3}))})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( sin(\frac{x^{4}}{(x^{2} + cos(x^{3}))} + \frac{1}{(x^{2} + cos(x^{3}))})\right)}{dx}\\=&cos(\frac{x^{4}}{(x^{2} + cos(x^{3}))} + \frac{1}{(x^{2} + cos(x^{3}))})((\frac{-(2x + -sin(x^{3})*3x^{2})}{(x^{2} + cos(x^{3}))^{2}})x^{4} + \frac{4x^{3}}{(x^{2} + cos(x^{3}))} + (\frac{-(2x + -sin(x^{3})*3x^{2})}{(x^{2} + cos(x^{3}))^{2}}))\\=&\frac{-2x^{5}cos(\frac{x^{4}}{(x^{2} + cos(x^{3}))} + \frac{1}{(x^{2} + cos(x^{3}))})}{(x^{2} + cos(x^{3}))^{2}} + \frac{3x^{6}sin(x^{3})cos(\frac{x^{4}}{(x^{2} + cos(x^{3}))} + \frac{1}{(x^{2} + cos(x^{3}))})}{(x^{2} + cos(x^{3}))^{2}} + \frac{4x^{3}cos(\frac{x^{4}}{(x^{2} + cos(x^{3}))} + \frac{1}{(x^{2} + cos(x^{3}))})}{(x^{2} + cos(x^{3}))} - \frac{2xcos(\frac{x^{4}}{(x^{2} + cos(x^{3}))} + \frac{1}{(x^{2} + cos(x^{3}))})}{(x^{2} + cos(x^{3}))^{2}} + \frac{3x^{2}sin(x^{3})cos(\frac{x^{4}}{(x^{2} + cos(x^{3}))} + \frac{1}{(x^{2} + cos(x^{3}))})}{(x^{2} + cos(x^{3}))^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !