There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - \frac{1}{(2x - 1)} - ln(2x - 1))}{(x - 1)(x - 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{1}{(2x - 1)(x - 1)^{2}} - \frac{ln(2x - 1)}{(x - 1)^{2}} + \frac{1}{(x - 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{1}{(2x - 1)(x - 1)^{2}} - \frac{ln(2x - 1)}{(x - 1)^{2}} + \frac{1}{(x - 1)^{2}}\right)}{dx}\\=& - \frac{(\frac{-(2 + 0)}{(2x - 1)^{2}})}{(x - 1)^{2}} - \frac{(\frac{-2(1 + 0)}{(x - 1)^{3}})}{(2x - 1)} - (\frac{-2(1 + 0)}{(x - 1)^{3}})ln(2x - 1) - \frac{(2 + 0)}{(x - 1)^{2}(2x - 1)} + (\frac{-2(1 + 0)}{(x - 1)^{3}})\\=&\frac{2}{(2x - 1)^{2}(x - 1)^{2}} + \frac{2}{(x - 1)^{3}(2x - 1)} + \frac{2ln(2x - 1)}{(x - 1)^{3}} - \frac{2}{(2x - 1)(x - 1)^{2}} - \frac{2}{(x - 1)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !