There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ (2 + x){e}^{\frac{1}{x}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2{e}^{\frac{1}{x}} + x{e}^{\frac{1}{x}}\right)}{dx}\\=&2({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) + {e}^{\frac{1}{x}} + x({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))\\=&\frac{-2{e}^{\frac{1}{x}}}{x^{2}} + {e}^{\frac{1}{x}} - \frac{{e}^{\frac{1}{x}}}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2{e}^{\frac{1}{x}}}{x^{2}} + {e}^{\frac{1}{x}} - \frac{{e}^{\frac{1}{x}}}{x}\right)}{dx}\\=&\frac{-2*-2{e}^{\frac{1}{x}}}{x^{3}} - \frac{2({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{x^{2}} + ({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)})) - \frac{-{e}^{\frac{1}{x}}}{x^{2}} - \frac{({e}^{\frac{1}{x}}((\frac{-1}{x^{2}})ln(e) + \frac{(\frac{1}{x})(0)}{(e)}))}{x}\\=&\frac{5{e}^{\frac{1}{x}}}{x^{3}} + \frac{2{e}^{\frac{1}{x}}}{x^{4}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !