There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {{x}^{a}}^{a} + {{a}^{x}}^{a} + {{a}^{a}}^{x} + {{a}^{a}}^{a}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {{x}^{a}}^{a} + {{a}^{x}}^{a} + {{a}^{a}}^{x} + {{a}^{a}}^{a}\right)}{dx}\\=&({{x}^{a}}^{a}((0)ln({x}^{a}) + \frac{(a)(({x}^{a}((0)ln(x) + \frac{(a)(1)}{(x)})))}{({x}^{a})})) + ({{a}^{x}}^{a}((0)ln({a}^{x}) + \frac{(a)(({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)})))}{({a}^{x})})) + ({{a}^{a}}^{x}((1)ln({a}^{a}) + \frac{(x)(({a}^{a}((0)ln(a) + \frac{(a)(0)}{(a)})))}{({a}^{a})})) + ({{a}^{a}}^{a}((0)ln({a}^{a}) + \frac{(a)(({a}^{a}((0)ln(a) + \frac{(a)(0)}{(a)})))}{({a}^{a})}))\\=&\frac{a^{2}{{x}^{a}}^{a}}{x} + a{{a}^{x}}^{a}ln(a) + {{a}^{a}}^{x}ln({a}^{a})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !