There are 1 questions in this calculation: for each question, the 1 derivative of t is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(tcos(t)abs(sin(t)))}{(abs((cos(t))))}\ with\ respect\ to\ t:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{abstsin(t)cos(t)}{abs(cos(t))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{abstsin(t)cos(t)}{abs(cos(t))}\right)}{dt}\\=&\frac{abssin(t)cos(t)}{abs(cos(t))} + \frac{abstcos(t)cos(t)}{abs(cos(t))} + \frac{abstsin(t)*-sin(t)}{abs(cos(t))}\\=&\frac{abssin(t)cos(t)}{abs(cos(t))} + \frac{abstcos^{2}(t)}{abs(cos(t))} - \frac{abstsin^{2}(t)}{abs(cos(t))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !