There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ln(\frac{sin(x)}{x})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(\frac{sin(x)}{x})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(\frac{sin(x)}{x})\right)}{dx}\\=&\frac{(\frac{-sin(x)}{x^{2}} + \frac{cos(x)}{x})}{(\frac{sin(x)}{x})}\\=&\frac{-1}{x} + \frac{cos(x)}{sin(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x} + \frac{cos(x)}{sin(x)}\right)}{dx}\\=&\frac{--1}{x^{2}} + \frac{-cos(x)cos(x)}{sin^{2}(x)} + \frac{-sin(x)}{sin(x)}\\=&\frac{1}{x^{2}} - \frac{cos^{2}(x)}{sin^{2}(x)} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !