There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ y + ln(y) - {e}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( y + ln(y) - {e}^{x}\right)}{dx}\\=&0 + \frac{0}{(y)} - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=& - {e}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - {e}^{x}\right)}{dx}\\=& - ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=& - {e}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !