There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 7{e}^{(7{e}^{x})}{e}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 7{e}^{(7{e}^{x})}{e}^{x}\right)}{dx}\\=&7({e}^{(7{e}^{x})}((7({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))ln(e) + \frac{(7{e}^{x})(0)}{(e)})){e}^{x} + 7{e}^{(7{e}^{x})}({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))\\=&49{e}^{(2x)}{e}^{(7{e}^{x})} + 7{e}^{x}{e}^{(7{e}^{x})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !