Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ 3x{e}^{x} - {e}^{(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 3x{e}^{x} - {e}^{(2x)}\right)}{dx}\\=&3{e}^{x} + 3x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - ({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))\\=&3{e}^{x} + 3x{e}^{x} - 2{e}^{(2x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3{e}^{x} + 3x{e}^{x} - 2{e}^{(2x)}\right)}{dx}\\=&3({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 3{e}^{x} + 3x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 2({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))\\=&6{e}^{x} + 3x{e}^{x} - 4{e}^{(2x)}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6{e}^{x} + 3x{e}^{x} - 4{e}^{(2x)}\right)}{dx}\\=&6({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 3{e}^{x} + 3x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 4({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))\\=&9{e}^{x} + 3x{e}^{x} - 8{e}^{(2x)}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 9{e}^{x} + 3x{e}^{x} - 8{e}^{(2x)}\right)}{dx}\\=&9({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 3{e}^{x} + 3x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - 8({e}^{(2x)}((2)ln(e) + \frac{(2x)(0)}{(e)}))\\=&12{e}^{x} + 3x{e}^{x} - 16{e}^{(2x)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return