There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ x(2cos(x) + 3sin(x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2xcos(x) + 3xsin(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2xcos(x) + 3xsin(x)\right)}{dx}\\=&2cos(x) + 2x*-sin(x) + 3sin(x) + 3xcos(x)\\=&2cos(x) - 2xsin(x) + 3sin(x) + 3xcos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2cos(x) - 2xsin(x) + 3sin(x) + 3xcos(x)\right)}{dx}\\=&2*-sin(x) - 2sin(x) - 2xcos(x) + 3cos(x) + 3cos(x) + 3x*-sin(x)\\=&-4sin(x) - 2xcos(x) + 6cos(x) - 3xsin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !