There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 4x{{e}^{2}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 4x{e^{2}}^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 4x{e^{2}}^{x}\right)}{dx}\\=&4{e^{2}}^{x} + 4x({e^{2}}^{x}((1)ln(e^{2}) + \frac{(x)(2e*0)}{(e^{2})}))\\=&4{e^{2}}^{x} + 8x{e^{2}}^{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4{e^{2}}^{x} + 8x{e^{2}}^{x}\right)}{dx}\\=&4({e^{2}}^{x}((1)ln(e^{2}) + \frac{(x)(2e*0)}{(e^{2})})) + 8{e^{2}}^{x} + 8x({e^{2}}^{x}((1)ln(e^{2}) + \frac{(x)(2e*0)}{(e^{2})}))\\=&16{e^{2}}^{x} + 16x{e^{2}}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !