There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2 + x - arctan(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - arctan(x) + 2\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - arctan(x) + 2\right)}{dx}\\=&1 - (\frac{(1)}{(1 + (x)^{2})}) + 0\\=& - \frac{1}{(x^{2} + 1)} + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{1}{(x^{2} + 1)} + 1\right)}{dx}\\=& - (\frac{-(2x + 0)}{(x^{2} + 1)^{2}}) + 0\\=&\frac{2x}{(x^{2} + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !