There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(e^{x} - e^{-x})}{(x(1 - {x}^{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{x}}{(-x^{3} + x)} - \frac{e^{-x}}{(-x^{3} + x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{x}}{(-x^{3} + x)} - \frac{e^{-x}}{(-x^{3} + x)}\right)}{dx}\\=&(\frac{-(-3x^{2} + 1)}{(-x^{3} + x)^{2}})e^{x} + \frac{e^{x}}{(-x^{3} + x)} - (\frac{-(-3x^{2} + 1)}{(-x^{3} + x)^{2}})e^{-x} - \frac{e^{-x}*-1}{(-x^{3} + x)}\\=&\frac{3x^{2}e^{x}}{(-x^{3} + x)^{2}} - \frac{e^{x}}{(-x^{3} + x)^{2}} + \frac{e^{x}}{(-x^{3} + x)} - \frac{3x^{2}e^{-x}}{(-x^{3} + x)^{2}} + \frac{e^{-x}}{(-x^{3} + x)^{2}} + \frac{e^{-x}}{(-x^{3} + x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !