There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ log_{2}^{3sqrt({x}^{8} + {x}^{4} + 1) + 3sqrt({x}^{8} - {x}^{4} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = log_{2}^{6sqrt(x^{8} + x^{4} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( log_{2}^{6sqrt(x^{8} + x^{4} + 1)}\right)}{dx}\\=&(\frac{(\frac{(\frac{6(8x^{7} + 4x^{3} + 0)*\frac{1}{2}}{(x^{8} + x^{4} + 1)^{\frac{1}{2}}})}{(6sqrt(x^{8} + x^{4} + 1))} - \frac{(0)log_{2}^{6sqrt(x^{8} + x^{4} + 1)}}{(2)})}{(ln(2))})\\=&\frac{4x^{7}}{(x^{8} + x^{4} + 1)^{\frac{1}{2}}ln(2)sqrt(x^{8} + x^{4} + 1)} + \frac{2x^{3}}{(x^{8} + x^{4} + 1)^{\frac{1}{2}}ln(2)sqrt(x^{8} + x^{4} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !