There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(sqrt({x}^{8} + {x}^{4} + 1) + sqrt({x}^{8} - {x}^{4} + 1))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(2sqrt(x^{8} + x^{4} + 1))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(2sqrt(x^{8} + x^{4} + 1))\right)}{dx}\\=&\frac{2(8x^{7} + 4x^{3} + 0)*\frac{1}{2}}{(2sqrt(x^{8} + x^{4} + 1))(x^{8} + x^{4} + 1)^{\frac{1}{2}}}\\=&\frac{4x^{7}}{(x^{8} + x^{4} + 1)^{\frac{1}{2}}sqrt(x^{8} + x^{4} + 1)} + \frac{2x^{3}}{(x^{8} + x^{4} + 1)^{\frac{1}{2}}sqrt(x^{8} + x^{4} + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !