There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(x + sqrt({x}^{2} + 1))}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x + sqrt(x^{2} + 1))^{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x + sqrt(x^{2} + 1))^{x}\right)}{dx}\\=&((x + sqrt(x^{2} + 1))^{x}((1)ln(x + sqrt(x^{2} + 1)) + \frac{(x)(1 + \frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}})}{(x + sqrt(x^{2} + 1))}))\\=&(x + sqrt(x^{2} + 1))^{x}ln(x + sqrt(x^{2} + 1)) + \frac{x^{2}(x + sqrt(x^{2} + 1))^{x}}{(x^{2} + 1)^{\frac{1}{2}}(x + sqrt(x^{2} + 1))} + \frac{x(x + sqrt(x^{2} + 1))^{x}}{(x + sqrt(x^{2} + 1))}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !