There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {y}^{(2{x}^{2} + 2)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {y}^{(2x^{2} + 2)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {y}^{(2x^{2} + 2)}\right)}{dx}\\=&({y}^{(2x^{2} + 2)}((2*2x + 0)ln(y) + \frac{(2x^{2} + 2)(0)}{(y)}))\\=&4x{y}^{(2x^{2} + 2)}ln(y)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4x{y}^{(2x^{2} + 2)}ln(y)\right)}{dx}\\=&4{y}^{(2x^{2} + 2)}ln(y) + 4x({y}^{(2x^{2} + 2)}((2*2x + 0)ln(y) + \frac{(2x^{2} + 2)(0)}{(y)}))ln(y) + \frac{4x{y}^{(2x^{2} + 2)}*0}{(y)}\\=&4{y}^{(2x^{2} + 2)}ln(y) + 16x^{2}{y}^{(2x^{2} + 2)}ln^{2}(y)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !