There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ x - {x}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x - x^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x - x^{\frac{1}{2}}\right)}{dx}\\=&1 - \frac{\frac{1}{2}}{x^{\frac{1}{2}}}\\=& - \frac{1}{2x^{\frac{1}{2}}} + 1\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{1}{2x^{\frac{1}{2}}} + 1\right)}{dx}\\=& - \frac{\frac{-1}{2}}{2x^{\frac{3}{2}}} + 0\\=&\frac{1}{4x^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !