Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ arccos(\frac{(x + 1)}{(x - 1)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arccos(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arccos(\frac{x}{(x - 1)} + \frac{1}{(x - 1)})\right)}{dx}\\=&(\frac{-((\frac{-(1 + 0)}{(x - 1)^{2}})x + \frac{1}{(x - 1)} + (\frac{-(1 + 0)}{(x - 1)^{2}}))}{((1 - (\frac{x}{(x - 1)} + \frac{1}{(x - 1)})^{2})^{\frac{1}{2}})})\\=&\frac{x}{(\frac{-x^{2}}{(x - 1)^{2}} - \frac{2x}{(x - 1)^{2}} - \frac{1}{(x - 1)^{2}} + 1)^{\frac{1}{2}}(x - 1)^{2}} + \frac{1}{(\frac{-x^{2}}{(x - 1)^{2}} - \frac{2x}{(x - 1)^{2}} - \frac{1}{(x - 1)^{2}} + 1)^{\frac{1}{2}}(x - 1)^{2}} - \frac{1}{(\frac{-x^{2}}{(x - 1)^{2}} - \frac{2x}{(x - 1)^{2}} - \frac{1}{(x - 1)^{2}} + 1)^{\frac{1}{2}}(x - 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return