Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{i}kx\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = kx{e}^{i}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( kx{e}^{i}\right)}{dx}\\=&k{e}^{i} + kx({e}^{i}((0)ln(e) + \frac{(i)(0)}{(e)}))\\=&k{e}^{i}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( k{e}^{i}\right)}{dx}\\=&k({e}^{i}((0)ln(e) + \frac{(i)(0)}{(e)}))\\=&0\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return