There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ - {log_{10}^{x}}^{\frac{3}{5}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - {\left(log_{10}^{x}\right)}^{\frac{3}{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - {\left(log_{10}^{x}\right)}^{\frac{3}{5}}\right)}{dx}\\=& - (\frac{\frac{3}{5}(\frac{(1)}{(x)} - \frac{(0)log_{10}^{x}}{(10)})}{{\left(log(10, x)^{\frac{2}{5}}(ln(10))})\\=& - \frac{3}{5x{\left(log(10, x)^{\frac{2}{5}}ln(10)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !